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Numerical simulation of thermocapillary nonwetting

J.-C. Chen a,*, C.-W. Kuo a, G.P. Neitzel b

a Department of Mechanical Engineering, National Central University, Chung-Li 320, Taiwan, ROC
b George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA

Received 9 September 2005; received in revised form 22 March 2006
Available online 7 July 2006
Abstract

The nonwetting phenomenon that occurs when a liquid drop is pressed against a solid wall held at a sufficiently lower temperature, is
analyzed numerically. An interstitial gas film, induced by thermocapillary convection, separates the drop from the wall, forming a self-
lubricating system. The temperature differences and wall distances were probed to evaluate their nonwetting effect. The results indicate
that increasing the temperature difference or decreasing the wall distance can enhance the wetting suppression, whether with silicone-oil
or water. The thermocapillary nonwetting phenomenon using 5 cSt silicone-oil droplet is more apparent than that obtained with water
when the wall distance is small enough, because the capillary number of silicone oil is much larger than that of water. Alternately, when a
cold liquid drop is moved towards a hot wall, the thermocapillary flow encourages the occurrence of wetting.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent experiments performed by Dell’Aversana et al.
[1–3] have demonstrated that, in the presence of a sur-
rounding gas, the coalescence of two bodies of the same
fluid that come into apparent contact and the wetting of
a solid surface pressed against a drop, can be prevented
by controlling the temperature difference between them.
This noncoalescence or nonwetting behavior is attributable
to the existence of a lubricating gas film driven by surface
motion that keeps the liquid–liquid or liquid–solid surfaces
from coming into actual contact. The gas motion is driven
by a thermocapillary-induced motion of the droplet free
surface (which also drives flow within the droplets) that is
generated by the existence of a temperature-induced sur-
face-tension gradient along the gas–liquid interface. These
instances have been referred to as ‘‘self-lubricated systems’’
and recent papers by Dell’Aversana and Neitzel [4] and
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Neitzel and Dell’Aversana [5] discuss these and other
related phenomena.

If two such surfaces are pressed together with sufficient
force, either the contact line that holds the liquid to the
solid will fail, causing the liquid to spill out onto the
surface, or the lubricating film will disappear, resulting in
coalescence or, in the case of a liquid and solid, wetting.

The ability of the thermocapillary-driven lubricating gas
film to withstand the load between the two opposing sur-
faces is a function of the temperature difference between
the two noncontacting surfaces, the volume of the droplet,
the relative distance between the two surfaces, and the
physical properties of the liquid and the gas. Dell’Aversana
et al. [1] show that, with a fixed load, two 5 cSt silicone-oil
drops do not coalesce when the temperature difference
between them exceeds a certain value and Dell’Aversana
and Neitzel [3] have shown that noncoalescence can be
maintained with very low static pressure in the surrounding
gas. These temperature-difference and pressure thresholds
vary with the fluid type; this thermocapillary-induced non-
coalescence phenomenon has not yet been observed to
occur with water.
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Nomenclature

Cal capillary number,
�
¼ cl;T DT

cl

�

Cp specific heat, J kg�1 �C�1

D distance between walls, m
H mean curvature of surface, m�1

i unit vector in x-direction
j unit vector in y-direction
k thermal conductivity, W m�1 �C�1

Kn Knudsen number (=k/d)

Mal Marangoni number, ¼ cl;T DTR
alll

� �

n normal vector of interface
P pressure, Pa(=N m�2)
Pr Prandtl number, (¼ m

a)
r local free surface radius, mm
R drop radius, m
S gas–liquid interface, m
T temperature, �C
u velocity component in x-direction, m s�1

v velocity component in y-direction, m s�1

V velocity vector, m s�1

Vs resultant speed on the drop’s free surface, m s�1

x coordinate, m
y coordinate, m

Greek symbols

a thermal diffusivity, m2 s�1

D difference

d thickness of the lubricating film, m
C drop volume, m2

c surface tension, kg s�2

cl,T surface-tension/temperature coefficient
k mean free path of air, m
l dynamic viscosity, kg m�1 s�1

m kinematic viscosity, m2 s�1

q density of fluid, kg m�3

r stress vector, kg m�1 s�2

Subscripts

a air
C cold wall
H hot wall
i phase
l liquid
n normal direction
ref reference state
s silicone-oil
t tangential direction
w water
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Dell’Aversana et al. [2] measured the shape of the
liquid–gas interface of a drop pressed against a solid sur-
face by means of laser interferometry. When the drop
exhibits nonwetting behavior a dimple appears, which
deepens and widens as the load increases; this has also been
observed for cases of noncoalescence. The thickness of the
interstitial gas film is of the order of a few microns for a
5 · 10�3 m diameter silicone-oil drop. Since it is very diffi-
cult to observe or measure the velocity and temperature
fields inside this gas film, an appropriate theoretical
treatment is needed to better understand the influence of
the gas motion on these noncoalescence nonwetting pheno-
mena.

Sumner et al. [6] have examined the liquid and gas flows
in a two-dimensional nonwetting drop using lubrication
theory, which is only suitable for an ideal slender drop with
smaller thermocapillary convection. They find that the
presence of a central dimple observed experimentally
requires the inclusion of inertia to be present.

Simulations of a nonwetting droplet are complicated by
the disparity of length scales involved. Typical droplet sizes
are of O (mm) while film thicknesses are O (lm). Numeri-
cal simulations of thermocapillary-driven noncoalescence
and nonwetting were performed by Monti et al. [7,8]. They
neglected flow-induced free-surface deformation, calculat-
ing the flow in the surrounding gas. However, the shape
of free surface was not updated using results from gas-flow
calculations in conjunction with the normal-stress bound-
ary condition. The present simulation computes flows in
the liquid and gas phases simultaneously, adjusting the
interface position through the use of the stress boundary
conditions imposed thereon.

In the present study, the commercial code FIDAP based
on finite element techniques has been employed to perform
a numerical simulation of thermocapillary wetting suppres-
sion. FIDAP has proven useful for problems involving
thermocapillary flow [9]. The physical problem considered
here is a two-dimensional liquid drop attached to a support
and pressed against a wall held at a different temperature.
This case corresponds to that treated experimentally by
Nalevanko [10] and examined theoretically using lubrica-
tion theory by Sumner et al. [6]. As mentioned above, the
flow in both the gas and liquid phases must be computed
simultaneously to simulate thermocapillary nonwetting.
We explore the velocity and thermal fields within both
the lubricating film and the liquid drop. A steady-state
solution is also discussed, with many parameters being con-
sidered, i.e., the drop/wall temperature differences and rel-



Fig. 1. Physical model of the simulation.
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ative displacement from the point of first apparent contact,
as well as considering two different drop liquids.

2. Mathematical formulation

A two-dimensional semicircular drop with a radius R is
attached to a hot lower surface while the cold upper surface
is pushed downward towards the liquid drop. Usually, the
drops in the experiments [1,10] were formed by injecting
liquid from a reservoir through a hole or slot in the pedes-
tal to which the droplet is affixed. Therefore, the contact
lines are assumed to be pinned at x = ±R on the lower sur-
face. The two parallel solid surfaces are separated by a dis-
tance D, as shown in Fig. 1. The temperatures of the hot
and the cold surfaces are TH and TC, respectively. The drop
is an incompressible, Newtonian liquid surrounded by air.
According to the estimate of Dell’Aversana et al. [2], the
Knudsen number Kn = k/d is less than 10�2, where k is
the mean free path of air and d is the thickness of the lubri-
cating film of air. A continuum model employing a no-slip
boundary condition is thereby assumed to hold for the gas
phase. The gas flow is also assumed to be incompressible in
light of the air velocity. Because the temperature difference
between the walls considered in the present study is not too
large, constant fluid properties are assumed with the excep-
tion of the surface tension, which is assumed to vary line-
arly with the temperature as described below. The liquid
volume of the drop is small, so gravity (buoyancy) may
be safely neglected in these computations.

The governing equations for this model are the continu-
ity, Navier–Stokes, and energy equations:

r � Vi ¼ 0; ð1Þ
qi½ðVi � rÞ�Vi ¼ �rP i þ lir2Vi; ð2Þ
qiCpiðVi � rT iÞ ¼ kir2T i; ð3Þ

where Vi = uii + vij is the velocity vector, Pi is the pressure,
Ti is the temperature, qi is the density, li is the dynamic vis-
cosity, Cpi is the specific heat, and ki is the thermal conduc-
tivity. The subscript ‘‘i’’ = ‘‘l’’ denotes the liquid phase
(‘‘l’’ = ‘‘s’’, if the liquid is silicone oil; ‘‘l’’ = ‘‘w’’, if the
liquid is water) and ‘‘i’’ = ‘‘a’’ represents a gas.

The surface tension of a particular liquid cl is considered
to be a linear function of the temperature, viz.,

cl ¼ cl;ref � cl;T ðT l � T refÞ; ð4Þ

where cl,ref is the surface tension at temperature Tref = TC

and cl,T is the surface-tension/temperature coefficient. The
gas–liquid interface described by y = S(x) satisfies the
kinematic condition, appropriate shear- and normal-stress
conditions, no-slip and continuity of temperature at the
interface:

Vl � rS ¼ Va � rS; ð5Þ
rl � ra ¼ 2clHn�rcl; ð6Þ
Vl ¼ Va; ð7Þ
T l ¼ T a; ð8Þ

where H is the mean curvature of the surface, n is the normal
vector of interface, and ri is the stress vector. Continuity of
heat flux at the interface is satisfied as a natural boundary
condition with the finite-element technique employed for
solution. The droplet’s volume is conserved, requiring

Z R

�R
SðxÞdx ¼ C; ð9Þ

where C is the drop volume per unit length. The boundary
conditions on the hot and cold surfaces are described
below:

ua ¼ va ¼ 0; T ¼ T C for y ¼ D and �1 6 x 61;
ð10Þ

ui ¼ vi ¼ 0; T ¼ T H for y ¼ 0 and � R 6 x 6 R; ð11Þ
oua

ox
¼ ova

oy
¼ oT

ox
¼ 0 for jxj ! 1 and 0 6 y 6 D: ð12Þ

Finally, the pinning condition at x = ±R requires that

Sð�RÞ ¼ SðRÞ ¼ 0: ð13Þ
From the previous experimental results [2], the intersti-

tial film thickness is about O (lm). Therefore, using a
numerical simulation to investigate the present thermo-
capillary nonwetting problem involves three difficulties:
dissimilar length scales associated with droplet and intersti-
tial film, moving gas–liquid interface, and couple effect of
gas and liquid flow fields. FIDAP has been used success-
fully to compute the moving gas–liquid interface problem
without considering the effect from the gas field. In the
present approach, we extend FIDAP code to simulate the
thermocapillary nonwetting problem incorporating the
existence of gas flow motion. The physical domain seen
in Fig. 1 was subdivided into elements, which form a grid.
The complex geometrics can be handled with unstructured
quadrilateral simplex elements. The total number of ele-
ments in the whole continuum field, including both drop
and air, was 3310. Different numbers of finite elements



Fig. 2. Mesh configuration of the physical domain.
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were examined, and the use of 3310 elements demonstrated
the best combination of accuracy and computation time.
To solve the difficulty of disparate length scales associated
with droplet and interstitial film, an appropriate finer mesh
is applied near the free surface in both liquid and gas fields,
as shown in Fig. 2; the nodes on the free surface are permit-
ted to move in the direction of the local normal. The above
partial-differential equations and boundary conditions
were discretized using the Galerkin finite-element method
Table 1
Fluid material properties

q (kg m�3) c (kg s�2) @ 20 �C cl,

Silicone oil 9.1 · 102 1.92 · 10�2 6.
Water 9.98 · 102 7.27 · 10�2 1.
Air 1.21
(GFEM) and the resulting nonlinear algebraic equations
were then solved using the uncoupled (i.e., segregated-
solver) method. Each degree of freedom was solved sepa-
rately. The associated flow problem was solved while the
appropriate boundary condition was fixed; iterations were
continued until velocity convergence to within a preset tol-
erance (less than 10�6) was satisfied. The location of the
free surface was updated using the normal-stress balance.
This procedure was repeated until the position of the free
surface converged. A combination of relaxing the pressure
and the use of an upwinding scheme was introduced to pre-
vent unphysical wiggles in the flow solution.

The simulation methodology developed by the present
approach based on the FIDAP has been used to compute
the isothermal wetting suppression case in the presence of
shear when a drop approaches a moving wall [13]. Smith
and Neitzel [14] develop a hybrid numerical model employ-
ing lubrication theory for the interstitial film and numerical
simulation for the liquid and outer gas fields. The defi-
ciency of their model is that the net flow rate of gas field
must provide artificially. On the contrary, the present
model is without this limitation. With the same physical
conditions, those from the two models agree quite well.

3. Results and discussion

Simulations were performed to investigate the surface
deformation of a semicircular drop immersed in air with
an initial radius of R = 1 · 10�3 m. The influences of the
temperature difference DT and the distance D between
the two parallel walls were determined. The liquids consid-
ered were 5 cSt silicone-oil and water; their physical prop-
erties are listed in Table 1.

The thermocapillary nonwetting experiments [2] have
been conducted by imposing a constant temperature differ-
ence of 35 �C between a droplet attached to a heated rod
pressed against a cooled glass surface. The temperature dif-
ference cannot be too large (which depends on the volatility
of the liquid employed) to minimize evaporation of liquid
from the droplet. With the experiments in mind, the tem-
perature difference between hot and cold walls is selected
for the present computations to be DT = 10, 30, and
50 �C. The numerical computation exhibited problems with
convergence of the solution when the distance between two
walls is less than 1.01 · 10�3 m. The experimental results [2]
also reveal that the interstitial film thickness measured by
interferometry is O (lm). Hence, the distance between
two walls is chosen for the computations to be
D = 1.01 · 10�3, 1.03 · 10�3, and 1.05 · 10�3 m.
T (kg s�2 �C�1) l (kg m�1 s�1) a (m2 s�1)

893 · 105 4.55 · 103 6.15 · 10�8

6 · 104 1.002 · 103 1.42 · 10�7

1.528 · 105 2.216 · 10�5
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Fig. 3 displays the streamlines and isotherms for silicone
oil when TC = 20 �C, DT = 30 �C and D = 1.01 · 10�3 m.
A pair of symmetric, counter-rotating vortices, generated
by temperature-induced surface-tension gradients, appears
inside the droplet. The silicone oil near the liquid–gas inter-
face moves from hot to cold locations, flowing back along
symmetrical lines extending from the vertex to the base of
the drop that is attached to the hot wall. The thermocapil-
lary movement causes not only bulk motion of the liquid
inside the drop, but also bulk flow within the air surround-
ing it. The air near the liquid–gas interface is swept by the
motion of the silicone oil into the small gap and flows out
along the cold wall to form the lubricating film, and this
bulk flow generates a pair of symmetric, counter-rotating
vortices in the ambient air surrounding the drop.

The Prandtl number (Pr ¼ m
a, where a is the thermal dif-

fusivity and m is the kinematic viscosity) characterizes the
relative importance of convective and diffusive thermal
transport. The Prandtl number (Prs = 74) for 5 cSt sili-
cone-oil is very large. Thus, the isotherms indicate the heat
Fig. 3. (a) Streamline contours and (b) isotherms for a hot drop pressed
against a cold wall held at TC = 20 �C, when DT = 30 �C and
D = 1.01 · 10�3 m.
transport to have been strongly influenced by convection;
the isotherm pattern in the drop indicates that it is well-
mixed. Computations by Carpenter and Homsy [11] of
2-D buoyant-thermocapillary flow in a rectangular geome-
try showed this same, well-mixed core when thermocapil-
larity dominates buoyancy. The largest temperature
gradients appear near the hot and the cold walls.

Fig. 4 shows the temperature, resultant velocity (V s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

), and pressure difference (DP = Pa � Pl) distribu-
tions on the silicone-oil drop’s free surface, when
TC = 20 �C and D = 1.01 · 10�3 m, with DT = 10, 30,
and 50 �C. Evidence of enhanced thermocapillary convec-
tion for increasing DT can be observed by comparing the
curves in Fig. 4(a). The solutions exhibit larger temperature
variations near the cold wall (x = 0) and the hot wall
(x = 1), whereas the temperature gradients far from both
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Fig. 4. (a) Temperature, (b) resultant velocity, (c) pressure difference
versus x, for a silicone-oil drop with D = 1.01 · 10�3 m and three different
DT.
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Fig. 5. (a) Temperature, (b) resultant velocity, (c) pressure difference
versus x, for a water drop with D = 1.01 · 10�3 m and three different DT.

4572 J.-C. Chen et al. / International Journal of Heat and Mass Transfer 49 (2006) 4567–4576
walls is smaller, especially for a larger DT. The magnitude
of the resultant free-surface velocity (Fig. 4(b)) is zero at
the contact lines (x,y) = (±1,0), as required by boundary
condition (11), while another zero-velocity point appears
at the stagnation point (x,y) = (0,S(0)), where the maxi-
mum pressure difference is observed (Fig. 4(c)). The veloc-
ity increases significantly when DT is increased, indicating
the dynamic pressure is higher for a larger DT. The pres-
sure difference increases dramatically when the stagnation
point is approached because the static pressure increases
as the dynamic pressure decreases. Therefore, as DT

becomes large, the pressure difference near the stagnation
point increases. The pressure difference for the position
away from the stagnation point is smaller for higher DT,
since it possesses a higher dynamic pressure.

The temperature, resultant velocity, and pressure differ-
ence distributions on a water free surface are shown in
Fig. 5, where TC = 20 �C and D = 1.01 · 10�3 m, with
DT = 10, 30, and 50 �C. The trend for the temperature dis-
tribution of water (Fig. 5(a)) is similar to that of silicone oil
(Fig. 4(a)). Near the cold wall, the corresponding free-sur-
face temperature of water is higher than that of silicone oil,
i.e., a more significant temperature drop-off exists in the
lubricating film for water, for the same DT, as can be seen
by comparing the curves in Figs. 4 and 5(a). The Marang-

oni number for this situation is defined as Mal ¼ cl;T DTR
alll

[12],

a larger Marangoni number indicative of stronger thermo-
capillary convection. At DT = 30 �C, the Marangoni num-

ber of water Maw ¼ cw;T DTR
awlw

¼ 50600
� �

is much larger than

that of silicone oil Mas ¼ cs;T DTR
asls
¼ 10064

� �
. Therefore,

the thermocapillary convection inside a water drop is more
vigorous than that inside a silicone-oil drop experiencing
the same DT. Hence, the free-surface velocity of water
(Fig. 5(b)) is much larger than the corresponding one for
silicone-oil (Fig. 4(b)). In turn, this makes the pressure dif-
ference for water (Fig. 5(c)) greater than that for silicone-
oil (Fig. 4(c)).

We also investigate the effect of the distance between the
cold wall and the vertex of a hot drop. Fig. 6 shows the
influence of different distances (D = 1.01 · 10�3,
1.03 · 10�3, and 1.05 · 10�3 m) for a silicone-oil drop with
DT = 30 �C. The thermal resistance of the interstitial film
will decrease as its thickness decreases. This explains why
the temperature gradients are enlarged for a smaller D, as
observed in Fig. 6(a). Obviously, decreasing D can enhance
the strength of the thermocapillary flow by increasing the
surface-temperature gradients near the drop vertex and
contact lines. As D decreases, the velocities along the free
surface are larger (Fig. 6(b)), while the pressure difference
varies accordingly (Fig. 6(c)). The trends for water drops
are similar to those for silicone-oil drops.

The distance r(x) from the origin to a point on the free
surface is plotted as a function of x in Fig. 7(a), indicating
that the silicone-oil drop forms a dimple at the stagnation
point, resulting in a bulge away from this point. These phe-
nomena become more notable as DT increases, for
D = 1.01 · 10�3 m and DT = 10, 30, and 50 �C. The capil-
lary number, defined as Cal ¼ cl;T DT

cl
, represents the ratio of

thermocapillary to capillary forces; the amount of free-sur-
face deformation is proportional to the capillary number.
Obviously, the capillary number increases as DT is
enlarged. The stress acting on the free surface is decom-
posed into normal and tangential components in order to
explain the free-surface distortion and the resultant veloc-
ity on it. The net normal stress rn increases as x! 0
(Fig. 7(b)), because the static pressure is large there. When
DT increases, the difference between normal stresses at the
stagnation point and contact line is increased, resulting in a
stronger pinching effect at the stagnation point than that at
the contact line leading to greater apparent deformation.
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Therefore, the free surface becomes concave inward at the
stagnation point, and the drop is convex outward away
from the vertex, as required for volume conservation.
The net tangential stress rt decreases as x increases except
when x! 1 (Fig. 7(c)), which explains the trends of the
velocity curves (Fig. 4(b)). The trends for water droplets
are similar to those for silicone oil.

Fig. 8 shows the S(0) of silicone-oil and water as a func-
tion of DT for D = 1.01 · 10�3 m. Both silicone-oil and
water have a vertex height S(0) that decreases, indicating
deepening of the dimple, as DT increases. The deeper dim-
ple exhibited by the droplet implies a greater pressure at the
center, caused by the increased speed of the free-surface,
which drags more gas into the interstitial space. Thus, the
nonwetting phenomenon can be enhanced by increasing
the temperature difference between the hot and cold walls.
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Fig. 11. (a) Streamline contours and (b) isotherms for a cold, silicone-oil
drop (T = 20 �C) pressed against a hot wall (T = 35 �C) and
D = 1.01 · 10�3 m.
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The experiments reported on in [1–3] were concerned with
the axisymmetric analog of the 2-D problem treated here,
so a direct quantitative comparison is not possible; the 2-
D experiments of Nalevanko [10] do not provide data of
sufficient detail to support a quantitative comparison.
For DT = 30 �C with D = 1.01 · 10�3 m, the capillary
number of silicone oil (Cas = 0.1077) is larger than that
of water (Caw = 0.066). Therefore, the nonwetting effect
for silicone is more significant.

The wall distance D influences the free-surface deforma-
tion of the silicone-oil drop, as shown in Fig. 9(a), for a
fixed DT = 30 �C. There is an increased surface-tempera-
ture gradient for a smaller D, because the thermal resis-
tance of the lubricating film decreases. Therefore, r(0)
(=S(0)) decreases as D decreases. The net normal stress
increases with decreasing D as x! 0 (Fig. 9(b)), exhibiting
the opposite trend away from the apex approaching the
contact line. For D = 1.01 · 10�3 m, the free surface dim-
ples at the stagnation point and bulges nearer the contact
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line. The net tangential stress increases as D is decreased
(Fig. 9(c)). The trends for the water drop are similar to
those of silicone oil.

Fig. 10 shows S(0) for silicone-oil and water droplets as
a function of wall distance D for DT = 30 �C. S(0)
decreases (i.e., indicating increased dimpling) with decreas-
ing D for both silicone oil and water. The dimpling for
water appears to be less than that for silicone oil for
D < 1.02 · 10�3 m.

The simulation may also be used to investigate the case
in which a cold droplet is moved toward a hot wall. The
thermal boundary conditions of the two solid surfaces are
now reversed. The streamline contours and isotherms for
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Fig. 12. (a) Temperature, (b) resultant velocity, (c) pressure difference
versus x for the conditions of Fig. 11.
silicone oil are plotted in Fig. 11 for an upper-wall temper-
ature of T = 35 �C and a lower-wall temperature of
T = 20 �C. A pair of symmetric, counter-rotating vortices
also appear within the droplet (Fig. 11(a)), but the direc-
tion of rotation is opposite to that observed in Fig. 3(a).
The shapes of the isotherms shown in Fig. 11(b) are unlike
those in Fig. 3(b), due to the opposite flow direction. The
lubricating film near the upper, hot wall flows from infinity
toward the symmetry axis, and is then dragged along the
silicone-oil free surface.

Fig. 12 shows surface temperature, speed and pressure
differences for this situation. The surface temperature
decreases slowly when x increases, decreasing abruptly near
x = 1 (Fig. 12(a)). The droplet free surface has an intense
temperature gradient near the cold wall (x = 1) to which
is pinned. Hence, the silicone oil appears to have a higher
velocity here (Fig. 12(b)). The velocity gradients near
x = 0 are much smaller than those near x = 1. Contrary
to the results for the hot droplet case shown in Fig. 5(c),
the pressure difference on the free surface at x = 0
decreases as the droplet is moved closer to the hot wall
(Fig. 12(c)). In this scenario, the thermocapillary motion
of the free surface actually serves to drain the lubricating
gas from the space between the liquid free-surface and
the hot wall, tending to promote, rather than prevent, wet-
ting. Fig. 13 shows the height at the drop vertex for a 5 cSt
silicone-oil drop, showing that the greater the temperature
difference, the larger the vertex bulge.

4. Conclusion

In this paper, the thermocapillary nonwetting effect has
been modeled by employing finite-element numerical simu-
lations performed with the commercial code FIDAP, to
study the individual effects of DT and D on the stagnation
point displacement for semicircular drops of silicone-oil
and water.

For a heated drop approaching a cold wall, air driven by
thermocapillary-induced free-surface motion is swept into
the space between the droplet and cold wall to continu-
ously replenish the lubricant, promoting the maintenance
of a nonwetting state. This air-flow magnitude, and hence,
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the nonwetting, may be increased by increasing either DT

or decreasing D. A silicone-oil droplet subjected to the
same conditions has a larger capillary number than that
of water. Therefore, a silicone oil drop more easily exhibits
deformation when D is small enough. Finally, it is observed
that wetting is enhanced rather than inhibited when a cold
drop is pressed against a hot plate, for gas is drained away
from the lubricating film.
Acknowledgement

GPN was supported by a grant from the Office of Bio-
logical and Physical Research of NASA.
References

[1] P. Dell’Aversana, J.R. Banavar, J. Koplik, Suppression of coales-
cence by shear and temperature gradients, Phys. Fluids 8 (1996) 15–
28.

[2] P. Dell’Aversana, V. Tontodonato, L. Carotenuto, Suppression of
coalescence and of wetting: the shape of the interstitial film, Phys.
Fluids 9 (1997) 2475–2485.

[3] P. Dell’Aversana, G.P. Neitzel, Behavior of noncoalescing and
nonwetting drops in stable and marginally stable states, Exp. Fluids
36 (2004) 299–308.
[4] P. Dell’Aversana, G.P. Neitzel, When liquids stay dry, Phys. Today
51 (1998) 38–41.

[5] G.P. Neitzel, P. Dell’Aversana, Noncoalescence and nonwetting
behavior of liquids, Annu. Rev. Fluid Mech. 34 (2002) 267–289.

[6] L.B.S. Sumner, A.M. Wood, G.P. Neitzel, Lubrication analysis of
thermocapillary-induced nonwetting, Phys. Fluids 15 (2003) 2923–
2932.

[7] R. Monti, R. Savino, Correlation between experimental results and
numerical solutions of the Navier–Stokes problem for noncoalescing
liquid drops with Marangoni effects, Phys. Fluids 9 (1997) 260–262.

[8] R. Monti, R. Savino, S. Tempesta, Wetting prevention by thermal
Marangoni effect. Experimental and numerical results, Eur. J. Mech.
B 17 (1998) 51–77.

[9] L.B.S. Sumner, G.P. Neitzel, J.-P. Fontaine, P. Dell’Aversana,
Oscillatory thermocapillary convection in liquid bridges with highly
deformed free surfaces: experiments and energy-stability analysis,
Phys. Fluids 13 (2001) 107–120.

[10] J. Nalevanko, Design of an apparatus for investigation of 2-D liquid
drop non-coalescence, M.S. Thesis, Georgia Institute of Technology,
1997.

[11] B.M. Carpenter, G.M. Homsy, Combined buoyant-thermocapillary
flow in a cavity, J. Fluid Mech. 207 (1989) 121–132.

[12] S. Ostrach, Low-gravity fluid flows, Annu. Rev. Fluid Mech. 14
(1982) 313–345.

[13] C.-W. Kuo, J.-C. Chen, G.P. Neitzel, Numerical simulation of
isothermal nonwetting, Int. J. Numer. Meth. Fluids, in press.

[14] M.K. Smith, G.P. Neitzel, Multiscale modeling in the numerical
computation of isothermal non-wetting, J. Fluid Mech. 554 (2006)
67–83.


	Numerical simulation of thermocapillary nonwetting
	Introduction
	Mathematical formulation
	Results and discussion
	Conclusion
	Acknowledgement
	References


